Preview

Surgut State Pedagogical University Bulletin

Advanced search

The Use of Generative Neural Networks to Personalize Programming Education in Higher Education Egorova G. I., Seliverstova M. V. Formation of an Inclusive Culture of Future Teacher to Ensure Culturological Safety of Students at All Levels of Education

https://doi.org/10.69571/SSPU.2025.97.4.015

Abstract

Artificial intelligence technologies, in particular generative neural networks, offer a wide range of capabilities that automate some of the teacher’s functions and help solve the tasks of personalizing learning. The purpose of the study is to identify the possibilities of generative neural networks to increase the effectiveness of personalized programming education in higher education institutions. Materials and methods: analysis and generalization of pedagogical and methodological literature on the problem of research, experiment, questionnaire, statistical methods. The study clarifies the components of the bachelor’s professional competence in IT fields of study, provides the stages of using generative neural networks to teach students how to create clean code and refactor, highlights the areas of application of artificial intelligence for teaching programming at a university. The effectiveness of using generative neural networks to personalize programming training is confirmed by the experiment. The authors conclude that it is necessary to transform traditional approaches to learning programming through the use of artificial intelligence capabilities.

About the Author

N. U. Dobrovolskaya
Kuban State University
Russian Federation

Dobrovolskaya Natalia Urievna – candidate of pedagogical Sciences, associate Professor



References

1. Agal’cova D. V. Tekhnologii iskusstvennogo intellekta dlya prepodavatelya vuza [Artificial intelligence technologies for university teachers] // MNKO. 2023. № 2 (99). S. 5–7. (In Russian).

2. Barshhevskij E. G. Ispol’zovanie iskusstvennogo intellekta [Using artificial intelligence] // Vostochno-Evropejskij nauchnyj zhurnal. 2023. № 3–2 (88). S. 56–58. (In Russian).

3. Bosova L. L. O professional’noj dejatel’nosti uchitelja informatiki v uslovijah cifrovoj transformacii obrazovanija [About the professional activity of a computer science teacher in the context of digital transformation of education] // Informatika v shkole. 2021. № 7. S. 10–14. (In Russian).

4. Vovk E. V. Metody iskusstvennogo intellekta v uchebnom processe vysshej shkoly [Methods of artificial intelligence in the educational process of higher education] // Problemy sovremennogo pedagogicheskogo obrazovanija. 2022. № 77. S. 109–112. (In Russian).

5. Ivahnenko E. N. ChatGPT v vysshem obrazovanii i nauke: ugroza ili cennyj resurs? [ChatGPT in Higher education and science: a threat or a valuable resource?] // Vysshee obrazovanie v Rossii. 2023. № 4. S. 9–22. (In Russian).

6. Dolinskij M. S. Napravleniya ispol’zovaniya generativnogo iskusstvennogo intellekta pri nachal’nom obuchenii programmirovaniyu v universitetakh [Directions of using generative artificial intelligence in the initial training of programming at universities] // KIO. 2024. № 2. S. 85–96. (In Russian).

7. Kabanova V. V. Primenenie iskusstvennogo intellekta pri rabote s mul’timedijnoj informaciej [The use of artificial intelligence when working with multimedia information] // Vestnik Cherepoveckogo gosudarstvennogo universiteta. 2022. № 6 (111). S. 2 3–41. (In Russian).

8. Konstantinova L. V. Generativnyj iskusstvennyj intellekt v obrazovanii: diskussii i prognozy [Generative artificial intelligence in education: discussions and forecasts] // Otkrytoe obrazovanie. 2023. № 2. S. 36–48. (In Russian).

9. Malyshev I. O. Obzor sovremennykh generativnykh nejrosetej: otechestvennaya i zarubezhnaya praktika [Overview of modern generative neural networks: domestic and foreign practice] // Mezhdunarodnyj zhurnal gumanitarnykh i estestvennykh nauk. 2024. № 1–2 (88). S. 168–171. (In Russian).

10. Marinosyan A. Kh. ChatGPT-4 v obuchenii fizike i matematike: vozmozhnosti, ogranicheniya i perspektivy sovershenstvovaniya [ChatGPT-4 in Teaching Physics and Mathematics: opportunities, limitations and prospects for improvement] // Vestnik MGPU. Seriya: Informatika i informatizaciya obrazovaniya. 2024. № 4 (70). S. 95–115. (In Russian).

11. Robert I. V. Cifrovaja transformacija obrazovanija: vyzovy i vozmozhnosti sovershenstvovanija [Digital transformation of education: challenges and opportunities for improvement] // Informatizacija obrazovanija i nauki. 2020. № 3(47). S. 3–16. (In Russian).


Review

For citations:


Dobrovolskaya N.U. The Use of Generative Neural Networks to Personalize Programming Education in Higher Education Egorova G. I., Seliverstova M. V. Formation of an Inclusive Culture of Future Teacher to Ensure Culturological Safety of Students at All Levels of Education. Surgut State Pedagogical University Bulletin. 2025;(4(97)):144-152. (In Russ.) https://doi.org/10.69571/SSPU.2025.97.4.015

Views: 50


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-7626 (Print)